Molecules found in mucus can thwart fungal infection: Harnessing the strength of these specialized sugar molecules could help researchers develop new antifungal drugs.

Candida albicans is a yeast that often lives in the human digestive tract and mouth, as well as urinary and reproductive organs. Usually, it doesn’t cause disease in its host, but under certain conditions, it can switch to a harmful form. Most Candida infections are not lethal, but systemic Candida infection, which affects the blood, heart, and other parts of the body, can be life-threatening.

MIT researchers have now identified components of mucus that can interact with Candida albicans and prevent it from causing infection. These molecules, known as glycans, are a major constituent of mucins, the gel-forming polymers that make up mucus.

Mucins contain many different glycans, which are complex sugar molecules. A growing body of research suggests that glycans can be specialized to help tame specific pathogens — not only Candida albicans but also other pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, says Katharina Ribbeck, the Andrew and Erna Viterbi Professor at MIT.

“The picture that is emerging is that mucus displays an extensive small-molecule library with lots of virulence inhibitors against all sorts of problematic pathogens, ready to be discovered and leveraged,” says Ribbeck, who led the research group.

Taking advantage of these mucins could help researchers design new antifungal medicines, or make disease-causing fungus more susceptible to existing drugs. Currently there are few such drugs, and some types of pathogenic fungus have developed resistance to them.

Key members of the research team also include Rachel Hevey, a research associate at the University of Basel; Micheal Tiemeyer, a professor of biochemistry and molecular biology at the University of Georgia; Richard Cummings, a professor of surgery at Harvard Medical School; Clarissa Nobile, an associate professor of molecular and cell biology at the University of California at Merced; and Daniel Wozniak, a professor of microbial infection and immunity, and of microbiology, at Ohio State University.

Source: Read Full Article